Skip to main content

Finite Impulse Response Filter

Overview

A Finite Impulse Response Filter works to filter data using a defined number of to data points to calculate an output (y-values) based on the current and previous inputs [x, x(n-1), x(n-2),... ]

Required Inputs

  • Time History Signal

Calculation - steps outline in 49 CFR 527.44 (d)

  1. Apply Butterworth Filter at CFC 180
    • CFC is an impact testing standard created by the SAE J211 guidelines
  2. Resample time step to 1600 Hz
  3. Remove any bias present in resampled signal (offset from zero)
  4. Calculate required parameters for Kaiser Window
    • A represents the stopband attenuation in dB
    • The 8 and 2.285 value used in the filter length equation is empirically derived for the Kaiser window
FilterLength(N)=A82.285(stopbandfrequencypassbandfrequency)Filter\,Length\,(N) = \frac{A-8}{2.285(stopband\,frequency - passband\,frequency)} WindowParameter(B)={0.1102(A8.7),forA>500.5842(A21)0.4+0.07886(A21),for21A500,forA<21Window\,Parameter(B) = \begin{cases} 0.1102*(A-8.7), for\,A>50 \\ 0.5842*(A-21)^{0.4}+0.07886*(A-21), for\,21 \le A \le 50\\ 0, for\, A < 21\end{cases}
  1. Apply basic formula for ideal low-pass filter to Kaiser window (w(t))
IdealLowPassFilter(hideal(t))=sin(2pi(cutofffrequency)t)pitIdeal\,Low\,Pass\,Filter\,(h_{ideal}(t)) = \frac{sin(2pi*(cutoff\,frequency)*t)}{pi*t} ImpulseResponse(h(t))=hideal(t)w(t)Impulse\,Response\,(h(t)) = h_{ideal}(t)*w(t)
  1. Calculate filter coefficients
    • In the equation below, n represents the sample index ranging from 0 to N-1
    • N represents the filter length
    • w(c) represents the Kaiser Window fucntion applied to the sinc function
FilterCoefficients(hn)=sin(2pi(cutofffrequency)(nN12))pi(nN12)w(n)Filter\,Coefficients\,(h_{n}) = \frac{sin(2pi*(cutoff\,frequency)*(n- \frac{N-1}{2}))}{pi*(n- \frac{N-1}{2})}*w(n_)
  1. Calculate Kaiser window
KaiserWindow(w(n))=Io(B1(2nN1)2)IoBKaiser\,Window\,(w(n)) = I_o \frac{(B \sqrt{1- (\frac{2n}{N-1})^2})}{I_o*B}
  1. Apply FIR filter, using calculated filter coefficients and Kaiser window, in both the forward and reverse direction to avoid phase distortion

Finite Impulse Response Filter Example

Before FIR

Before FIR is applied to signal

After FIR

After FIR is applied to signal